Code: 22ECMC2T3

I M.Tech - II Semester - Regular Examinations - JULY - 2023

MICROWAVE NETWORKS (MICROWAVE & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

F	ı		1	1	T			
			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	With a relevant figures, explain Reciprocal	L3	CO1	8M			
		networks and loss less networks.	L3	COI	OIVI			
	b)	In detail, explain about the Transmission	1.2	CO1	71/4			
		(ABCD) matrix.	L2	CO1	7M			
OR								
2	a)	What is Mason's rule? Draw and describe						
		the signal flow graph representation of	L3	CO1	7M			
		linear system.						
	b)	How the Signal Flow Graph can be						
		systematically reduced to a simple form and	L3	CO1	8M			
		give the desired solution by inspection.						
UNIT-II								
3	a)	What is S-matrix? Describe the significance						
		of S-Matrix. In detail, explain the properties	L3	CO2	8M			
		of S-Matrix.						

			ı	1				
	b)	What is Single Stub tuning? Draw and						
		explain the basic shunt stub tuner and Series	L3	CO2	7M			
		stub tuner.						
OR								
4	a)	Define lumped element matching. In detail,						
		describe the lumped and distributed	L3	CO2	7M			
		elements. Explain the major limitations of a			/ IVI			
		lumped elements matching L network.						
	b)	What are the properties of Smith chart?						
		Discuss the applications of Smith Chart.	L4	CO2	8M			
		With a neat illustration, explain the concept						
		of R-Circles and X-Circles.						
		UNIT-III						
5	a)	What is aperture coupling? With a neat						
		sketches, explain the process of coupling						
		through an aperture in a Transverse	L3	CO3	8M			
		waveguide wall and broad wall of						
		waveguide.						
	b)	Obtain the expression for resonant	L3	CO3	7M			
		frequency of a Circular Cavity Resonator.			/ 1/1			
		OR						
6	a)	Explain the basic principle of operation of						
		Cavity resonator. With a neat sketch,						
		explain the features of Rectangular Cavity						
		resonator and describe the Quality factor	L3	CO3	8M			
		when lossy walls are present.						
1	1							

	b)	Design a Rectangular cavity of length d, height b=1.2cm, width a=2.5cm, that will resonate at 10,000MHz. The cavity is critically coupled to a rectangular guide of dimensions a by b. Specify the cavity length "d".	L4	CO3	7M		
UNIT-IV							
7	a)	What is the significance of π (pi) network? Derive the expression for image impedance of a two-port π (pi) network.	L4	CO4	7M		
	b)	With a neat sketches, Briefly explain the following terms and corresponding conditions: i. Low pass filter ii. High pass filter iii. Band pass filter iv. Band stop filter	L3	CO4	8M		
OR							
8	a)	What is Richard's transformation? Illustrate the significance of Richard's transformation.	L3	CO4	7M		
	b)	With a neat sketch, explain the Image- parameter method of filter design.	L3	CO4	8M		